Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Int ; 331: 111155, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34972050

RESUMO

A redesigned quantitative reliability metric based on the F-distribution (QRMf) is reported for evaluating the reliability of library search. The QRMf provides orthogonal information to the comparison metric (e.g., dot product) and yields a probabilistic result. An intralibrary search can be considered as an idealized search because the top hit, i.e., the closest matching object, will match perfectly. If the search of an unknown object yields the same hit list as the intralibrary search, it would indicate good reliability. For each object in the hit list, a QRMf compares the order of an intralibrary and interlibrary search results and calculates a variance of interlibrary similarity metrics between the records of the intralibrary search and records in the corresponding positions of the interlibrary search. This variance that measures the discordance of the intra and interlibrary search can simply be compared to the variance of the similarity metrics within the interlibrary search results. The ratio of these variances follows an F-distribution that can be used to determine if the discordance is statistically significant and generates the probability based on the cumulative distribution function. The QRMf works for both similarity and dissimilarity and can be used for any queried object and comparison metric that is searched against a database. In this work, the QRMf was used along with the dot product similarity to query the mass spectra of novel synthetic opioids measured by gas chromatography-mass spectrometry (GC/MS). An automated pipeline was devised that used a basis set correction to assist peak detection. The basis was constructed by mass spectra obtained from the blank measurement preceding the analytical run to remove interferences from column bleed and septum degradation. After peak detection, the pipeline applied multivariate curve resolution to the chromatographic peak window to remove background components from the mass spectra. The corrected mass spectra were searched against a customized library for identification. The QRMf can be used along with the similarity metric to detect misidentifications and assist in finding the correct identification when it is not the closest match.

2.
J Nat Prod ; 84(11): 2851-2857, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34784219

RESUMO

Cannabidiol (CBD, 1) is an active component of hemp oil and many other products that offers diverse health benefits. Near-infrared spectroscopy (NIRS) coupled with chemometrics was utilized to quantify the CBD (1) concentration in the hemp oil through the containing glass vial. NIRS provided a fast and cost-effective tool to measure chemical profiles for the hemp oil samples with various concentrations of CBD (1) and its acid precursor, i.e., cannabidiolic acid (CBDA, 2). The measured NIR spectra were transformed by using a Savitzky-Golay first-derivative filter to remove baseline drift. Two self-optimizing chemometric methods, super partial least-squares regression (sPLSR) and self-optimizing support vector elastic net (SOSVEN), were applied to construct automatically multivariate models that predict the concentrations of CBD (1) and total CBD (sum of 1 and 2 concentrations) of the hemp oil samples. The SOSVEN had validation errors of 6.4 mg/mL for the prediction of CBD (1) concentration and 6.6 mg/mL for the prediction of total CBD concentration, which are significantly lower than the errors given by sPLSR. Other than the lower validation errors, SOSVEN has another advantage over sPLSR in that it builds a multivariate model while selecting spectral features at the same time. These results demonstrated that NIR spectroscopy combined with chemometrics can be used as a rapid and cost-effective approach to determine the CBD (1) and total CBD concentrations in hemp oil. Manufacturers would benefit from the fast and reliable approach in quality assurance.


Assuntos
Canabidiol/análise , Extratos Vegetais/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Cannabis
3.
Anal Chim Acta ; 1090: 47-56, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31655645

RESUMO

Soft independent modeling of class analogy (SIMCA) is an important method for authentication. The key parameters for SIMCA, the number of principal components and the decision threshold, determine the model's performance. In this report, a self-optimizing SIMCA that automatically determines these two parameters is devised and referred to as automatic SIMCA (aSIMCA). An efficient optimization is obtained by incorporating response surface modeling (RSM) and bootstrapped Latin partitions with the model-building dataset. A set of design points over the ranges of the two parameters are evaluated with respect to sensitivity and specificity by using the model-building data from target and non-target classes. Averages of the sensitivity and specificity are used as responses for the design points. A 2-dimensional interpolation and a bivariate cubic polynomial were used to model the response surface. As a control method, a grid search that evaluates all combinations of the two parameters over the same ranges was performed in parallel to determine the best conditions for SIMCA and the modeling performance was compared to aSIMCA with RSM. The developed aSIMCA methods were evaluated by authenticating two botanical extracts sets, i.e., marijuana and hemp, with spectral datasets collected from various spectroscopic techniques, including nuclear magnetic resonance, high-resolution mass, and ultraviolet spectrometry. Results of a paired t-test indicated that the aSIMCA with the RSM had similar performance with the one optimized by the grid search for modeling marijuana and hemp, while the RSM was more computationally efficient. The 2-dimensional interpolation is preferred because the better efficiency and the fit to the response surface is more precise.


Assuntos
Algoritmos , Cannabis/química , Modelos Teóricos , Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Espectrometria de Massas/estatística & dados numéricos , Extratos Vegetais/análise , Espectrofotometria Ultravioleta/estatística & dados numéricos
4.
Anal Chim Acta ; 954: 14-21, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28081808

RESUMO

The support vector machine (SVM) is a powerful classifier that has recently been implemented in a classification tree (SVMTreeG). This classifier partitioned the data by finding gaps in the data space. For large and complex datasets, there may be no gaps in the data space confounding this type of classifier. A novel algorithm was devised that uses fuzzy entropy to find optimal partitions for situations when clusters of data are overlapped in the data space. Also, a kernel version of the fuzzy entropy algorithm was devised. A fast support vector machine implementation is used that has no cost C or slack variables to optimize. Statistical comparisons using bootstrapped Latin partitions among the tree classifiers were made using a synthetic XOR data set and validated with ten prediction sets comprised of 50,000 objects and a data set of NMR spectra obtained from 12 tea sample extracts.


Assuntos
Algoritmos , Entropia , Máquina de Vetores de Suporte , Chá/química
5.
Anal Chem ; 87(21): 11065-71, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26461495

RESUMO

Proteomic and metabolomic studies based on chemical profiling require powerful classifiers to model accurately complex collections of data. Support vector machines (SVMs) are advantageous in that they provide a maximum margin of separation for the classification hyperplane. A new method for constructing classification trees, for which the branches comprise SVMs, has been devised. The novel feature is that the distribution of the data objects is used to determine the SVM encoding. The variance and covariance of the data objects are used for determining the bipolar encoding required for the SVM. The SVM that yields the lowest entropy of classification becomes the branch of the tree. The SVM-tree classifier has the added advantage that nonlinearly separable data may be accurately classified without optimization of the cost parameter C or searching for a correct higher dimensional kernel transform. It compares favorably to a regularized linear discriminant analysis, SVMs in a one against all multiple classifier, and a fuzzy rule-building expert system, a tree classifier with a fuzzy margin of separation. SVMs offer a speed advantage, especially for data sets that have more measurements than objects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...